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Abstract

The vibrational behaviour of 1D mechanical structures locally loaded with additional masses according to a self-similar

pattern is considered. An analysis of the multiple scattering problem is proposed to point out the existence of strongly

localized modes. The eigenfrequency distribution is investigated through the vibrational integrated density of state

(integrated DOS). The features of this distribution allow one to predict the mode shapes and give an indication of the

additional masses number and weight. Finally, the role played by the distribution of the additional masses in the

vibrational behaviour of the structure is discussed.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Following the pioneering work of Anderson on localization about random systems [1], the vibrational
properties of structures presenting a self-similar mass distribution have been widely studied since the beginning
of the 1980s [2–5]. In a previous paper [6], has been presented an experimental and numerical study of acoustic
propagation in a self-similar waveguide (see Fig. 1a–d) where stop-bands and trapped modes are observed.
These modes have been related to a localization phenomenon.

On one hand, such an acoustic waveguide is interesting to analyse and describe the trapping sound waves
but it is difficult to perform continuous measurement inside the structure without perturbations to verify the
localization hypothesis. On the other hand, the waveguide has the advantage to be easily mimicked by any
constant localized mechanical system with the possibility of a simpler experimental realization as well as an
analytical description. A mechanical system has been designed on a lattice of identical masses coupled by
springs; it converges to a string when the length of the springs leads to zero.1 Discontinuities are obtained by
inserting loading masses at points corresponding to the Cantor set (see Fig. 1e–h). This ‘toy system’ has not
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Fig. 1. Order 0, 1, 2 & 3 of the acoustic waveguide (a)–(d) and the mechanical structure (e)–(h). For each structure, the corresponding

prefractal figure of the Cantor set is represented with bold segments.
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been designed through an iterative process to reproduce a string loaded by masses but to allow simple
analytical and numerical study which results on the associated eigenproblem reveals the presence or the
absence of localized modes.

Localized and extended modes as well as forbidden bands are an important subject in solid state physics
where the properties of crystals [7], quasi-crystals [8–11] and random materials [1] leads to these peculiar
properties. Moreover the whole set of these behaviours can be also found on fractal structures. Even if these
crystallographic studies are very near of mechanics, only a very few number of references are available in the
field of structures and structural mechanics. One can cite without any exhaustivity the works of Bouzit et al.
on random structures and that of Fletcher et al. on fractal structures [12–14].

In a first part, the analytical description of the mechanical system is given. Then the solution (in frequency
and in space) of the eigenproblem is determined and trapped modes are observed. In a second part, we show
that these modes are strongly localized (Section 3). These phenomena will be analysed through the integrated
density of state (Section 4). Finally, the properties of a randomized self-similar structure [15] is shown
to be almost equivalent to a deterministic self-similar structure of same order n and fractal dimension D

(Section 5).

2. The Cantor-like vibrating structure

The Cantor-like vibrating structure is a self-similar object [5,16,17], built through an iterative homothetic
process that leads, when iterate to infinity, to a fractal [18,19] as any object built in a same way. When the
iterative process is not driven to infinity, the object is a prefractal of order n.

Experimental and numerical evidence of mode trapping has been achieved in a previous acoustical work [6].
A self-similar waveguide is built from an initial pattern made of 3 successive tubes of length l=3 and diameter
d, D and d ðD4dÞ which is amplified and replicated and timed according to the Cantor set to what will be
called a Cantor like waveguide of order n (see Figs. 1a–d). The modes of this acoustical waveguide have been
explored through impedance and transmission losses measurements, then compared to numerical simulations.
The results prove the existence of trapped or maybe localized modes. As it is difficult to visualize the modal
acoustic field with sufficient accuracy to verify if the trapped modes are really localized, other experiments or
numerical simulations are required. Any change in diameter causes an impedance discontinuity. When
sufficiently important, these discontinuities act as scatterers allowing to replace the acoustical problem by 1D
multiple scattering one. We develop a mechanical model where tubes of any diameter (called spans) are
represented by a constant localized system of identical springs and masses, and where the diameter
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discontinuities are represented by extra masses. For a unit length mechanical structure, these masses are
placed at the edges of the portions of a Cantor set of same prefractal order, as shown in Figs. 1e–h.

The structure is defined by its number of elements N, its length l, its prefractal order n, the mass m of each
identical adjacent mass, the mass M of each mass discontinuity and the stiffness k of each spring. The number
p of masses M is

p ¼
Xn

i¼1

2i ¼ 2nþ1 � 2. (1)

Two masses M delimit a span; we count 2nþ1 � 1 spans in the order n structure. The length ls;i of a span is
ls;i ¼ i � l=3n with i integer ði 2 ½1; n�Þ.

We define the loading ratio b as

b ¼
sum of additional mass

mass of the non�loaded chain
¼

p ðM �mÞ

Nm
. (2)

This parameter is another way to characterize masses M and eventually allows to compare structures of
different order and same weight. The study is limited to highly loaded structures ðb 2 ½1;þ1½Þ.

Considering the harmonic motion of pulsation o, the transversal displacement yiðtÞ ¼ ŷi exp ðjotÞ of the ith
mass from its equilibrium position obeys the motion equation:

�mio2ŷi þ 2kŷi � kðŷi�1 þ ŷiþ1Þ ¼ 0, (3)

with mi equals to M if i corresponds to a loaded site and to m if it does not. The whole set of equations can be
represented through a tri-diagonal dynamical matrix D ðn;m; b;NÞ:

D ðn;m;b;NÞ �

ŷ1

..

.

ŷN

8>><
>>:

9>>=
>>; ¼

0

..

.

0

8><
>:

9>=
>;, (4)

with D ðn;m; b;NÞi;i ¼ 2k=mi � o2 and D ðn;m;b;NÞi�1;i ¼ �k=mi.
Considering the matrix:

M ðn;m;b;NÞ ¼ D ðn;m;b;NÞ þ o2 � I, (5)

with I the N �N identical matrix, the roots of the characteristic equation det ðM ðn;m;b;NÞÞ ¼ 0 are the
squared eigenfrequencies ok of the problem. The eigenmodes are the eigenvectors of M ðn;m;b;NÞ. The
numerical solution is straightforward and has no drawback.

The representation of the whole set of the eigenmodes2 (see Fig. 2 for an order 3 highly loaded structure
ðbb1Þ) shows that for some frequency bandwidths, the wave remains trapped in localized zones of the
structure. We define o0 as the fundamental frequency of the non-loaded structure. In Fig. 2, for o=o0o12, the
behaviour is close to the one of homogeneous structures: the vibration is present in each span and the modes
appear extended. Between this frequency and o=o0 � 25, the modes are ‘‘trapped’’: energy is concentrated
within the central span or the central span of the lateral parts of the structure. Beyond o=o0 ¼ 25, the pattern
of Fig. 2 is strictly periodic: extended modes alternate with two modes trapped in the central span followed by
one mode trapped in the lateral parts.3 As already observed [3,6], we notice that when energy is trapped in the
lateral spans, the central span is motionless, although the lengths of two spans are linked by an integer factor.
The structure is intermediate between a periodic system and a random one, as quasi-lattices [8,9,11].

These observations raise two questions: May the mode trapping phenomenon observed be qualified of
strong localization? May the particular mode distribution be explained?
2This figure is analogous to the representation of the simulated internal pressure distribution for an order 3 Cantor-like waveguide

(see Fig. 10 from Ref. [6]).
3In fact three trapped modes in the central part and 2 in the lateral one counting the degenerated modes.
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Fig. 2. Set of the N=2 first transverse eigenmodes ðŷiÞ of the order 3 structure (b ¼ 1:15 and N ¼ 243). o0 is the fundamental pulsation of

the non-loaded structure.
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3. Strong localization of the transversal displacement

The trapping phenomenon is clearly observed for modes 21 and 23 of the order 3 structure in Figs. 3a
and b. It can be characterized precisely by observing how energy is decaying (in the time domain) at the
edges of the concerned spans: Figs. 3c and d clearly show that the decay of the logarithm of the displace-
ment absolute value is linear. Beyond the pth eigenfrequency op (½0;op� is the first passband of the
structure and corresponds to the resonance of the loading masses), the displacement of the masses M is weak
and it has been assumed that each of these masses behaves as a scatterer, characterized by a same reflection
coefficient R and a same transmission coefficient T [20]; in the case of highly loaded structures, R is much
higher than T at any frequency.4 Out of the trapping zone, a multiple scattering process of the wave
leads to its exponential spatial extinction. Considering a wave coming out from a trapped mode span, its
amplitude Ai is transmitted5 with a global transmission coefficientT ðrÞ (r, distance from a point to the edge of
the span):
�

4

stru
5

at the abscissa r ¼ 0, T ðrÞ ¼ Tð1þ R2 þ R4 þ O ðR6;TÞÞ,

�
 at abscissa r ¼ l=3n, T ðrÞ ¼ T2ð1þ 2R2 þ 3R4 þ O ðR6;TÞÞ,

�
 at abscissa r ¼ 2l=3n, T ðrÞ ¼ T3ð1þ 3R2 þ 6R4 þ O ðR6;TÞÞ,

�
 and at abscissa r ¼ 3l=3n, T ðrÞ ¼ T4ð1þ 3R2 þ 6R4 þ O ðR6;TÞÞ,
where O ðR6;TÞ represents the terms that are neglected. The transmission process does not exactly correspond
to a geometric series (that leads an exponential evolution of the transmitted wave); considering that energy is
extinguished if the wave amplitude after the fourth scatterer is less than one percent of the initial wave, we
In fact, it is easy to show [20] that for any value of b40, R tends to 1 as frequency increase; localization exists for lightly loaded

cture if it is possible to study eigenmodes at high frequency.

Considering the transmission process after 6 of 7 steps where one step correspond to l=ðc� 3nÞ and c is the wave celerity.
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Fig. 3. Shape and Log-shape of the displacement (the circles correspond to scatterers positions): (a) mode 21�o=o0 ¼ 15:0, (b) mode

23� o=o0 ¼ 18:4, (c) mode 21� log ðjyiðoÞjÞ, (d) mode 23� log ðjyiðoÞjÞ.

Table 1

Numerical study of the global transmission process ðT ¼ 0:204Þ

r 0 l=3n 2l=3n 3l=3n

T ðrÞ 0.536 0:263 0:120 0:038
log ðT ðrÞÞ �0.271 �0.580 �0.920 �1.415
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assume T4ð1þ 3R2 þ 6R4Þp0:01 that gives Tp0:204 and R ¼ 1� TX0:796. Table 1 represents the numerical
values of T ðrÞ and log ðT ðrÞÞ in this case. The correlation coefficient between r and Y ¼ log ðT ðrÞÞ is
rr;Y ¼ cov ðr;Y Þ=ðsrsY Þ with cov ðx; yÞ covariance of populations x and y and sx standard deviation of
population x; with Table 1 values, we obtain rr;Y � �0:993. The linear relation linking r and Y leads to an
exponential relation between r and T ðrÞ; the decay of energy outside the considered span is exponential. This
can be written as

yiðrÞ � Ai exp ð�r� f ðRÞÞ and T51, (6)
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Fig. 4. Integrated DOS of the order 3 structure (the N=2 first modes; b ¼ 1:15 and N ¼ 243): (a) correspond to localization in

lateral spans.
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with f ðxÞ, function of x. dL ¼ 1=f ðRÞ is defined as the length of localization. The expression of yiðrÞ is then:

yiðrÞ � Ai exp �
r

dL

� �
. (7)

This expression is similar to the decay formulation of Anderson [1].
In such self-similar structures, mode trapping corresponds to an exponential extinction of the displacement

and consequently to a strong localization phenomenon. In that case, the rapid decay of energy at the edges of
the localization zone prevents wave from propagating outside the span and it is not transmitted; the structure
behaves as a stop-band filter.
4. Integrated density of state: cross-overs and devil staircase-like shape

4.1. Cross-overs

The integrated density of state6 (integrated DOS) IðoÞ represents, for a given system at a given frequency o,
the number of eigenmodes that can be found in the frequency interval ½0;o�. This parameter is often used to
identify the nature (extended, localized) of the modes since frequency distribution and mode shape are highly
linked [2,8]. For homogeneous structures, according to Debye law [21], we get log ðIðoÞÞ / d log ðoÞ, with d the
euclidean space dimension in which the structure is embedded. It has been shown that for mass fractal
structures and on the range of length where the fractal pattern is observed [2,22], localized modes distribution
leads to log ðIðoÞÞ / d̄ log ðoÞ with d̄ defined as the spectral dimension [2,23]. This dimension d̄ ¼ 2D=ð2þ dÞ
is obtained with D the fractal dimension of the structure and d a parameter characteristic of its geometry and
its connectivity; one finds d̄od for d41 and d̄ ¼ d for d ¼ 1.
6Also known as integrated density of mode.
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Fig. 5. Comparison between two close structures: (a) order 3 self-similar structure; (b) periodic structure.
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Fig. 6. Representation of the Integrated DOS of a periodic and a self-similar structure (N=2 first modes; b ¼ 1:15 and N ¼ 243):

� deterministic, � self-similar. The dotted lines delimit the extended mode zones of the two structures.
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Fig. 4 represents the integrated DOS IðoÞ of the order 3 structure, presented at Section 2. The shaded zones
correspond to extended mode bandwidths. Numerous slope crossovers give the figure a stair-like shape; the
extended mode slopes (Fig. 4, slopes gext) are much higher than the localized mode ones (Fig. 4, slopes gloc).
Using a precise analysis of the mode shapes, we show that these crossovers do not correspond here to any
spectral dimension value.

The vibrating behaviour of periodic structures such as the one shown in Fig. 5b is well known [21]: all the
modes of their spectrum are extended and appear in pass bands separated by large band gaps. The first pass
band corresponds to a mode family called ‘‘acoustic phonon mode’’ while the others describe a second one
called ‘‘optical phonon mode’’ [21].

Comparing the integrated DOS of a prefractal order 3 structure to a fully periodic structure of same length
(these two structures are shown in Fig. 5 while their integrated DOS appear in Fig. 6), it appears that the
branches of the extended modes are nearly the same.7 The integrated DOS of the extended zones of the
prefractal structures is well described by the integrated DOS of the periodic structure; this one is deduced from
the dispersion relation of the structure (I / k, with k the wavenumber) since, for 1D structures, the wave
number is linked to the order of the mode in the spectrum. Among these extended modes, we find localized
ones. Fig. 6 shows that the localized modes of the prefractal structure8 appear in the band gaps of the periodic
7Their heights are different because there are more extended modes in a periodic structure (there are more extra masses).
8Because of its periodicity, the periodic structure do not possess any localized mode.
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structure showing how the structures studied are intermediate between periodic and random structures. If the
exponential decay is fast enough, we can make the approximation that, at low frequency, the localized modes
are nothing but simple string modes within the structure.

Each set of modes previously described obeys to a specific dispersion relation. For the extended modes, the
dispersion relations of acoustic and optical phonon modes are well known [21]. They are not linear but their
maximum slope Do=Dk is the one of the acoustical modes at low frequency, which corresponds to the
dispersion law of a continue string of same weight [8]. This slope is proportional to the inverse of the minimum
slope DI=Do of the integrated DOS I. For the localized modes, since they also correspond to simple string
modes, their dispersion relation as well as their integrated DOS are known. We get:

DI

Doext;opt
4

DI

Doext;acou
/ lp

ffiffiffiffiffi
rp

p
as well as

DI

Doloc
/ lp

ffiffiffiffiffi
rp

p
, (8)

where lp is the length of the vibrating part and rp its density. ðDI=DolocÞ is always smaller than ðDI=DoextÞ

because for the localized modes the length lp appears shorter (the wave settles in a limited zone of the
structure) and the density rp slighter (the localization excludes the loading masses from the shape). Transition
from an extended modes zone to a localized one actually corresponds to a crossover in the integrated DOS.
These crossovers do not correspond to a particular value of the spectral dimension d̄ as this parameter is equal
to the euclidean dimension d for a mono-dimensional structure (d̄ ¼ d ¼ 1, see Refs. [2,23]).

4.2. Identification of the vibrating spans in localized modes

Other information on the vibrating behaviour is available from the integrated DOS. For b!1 (condition
that actually turns to M mass to absolute reflective scatterer), any vibration that settles within the span of
length ls also settles in spans of length 3k � ls, with k integer. For b finite but high ðb41Þ, these degenerations
turn to quasi-degenerations. Localized modes in shorter spans than the central one are always frequentially
close to a set of modes localized in longer spans; we observe quasi-vertical zones in the integrated DOS curve
(see Fig. 4, mark a). In these zones, DI , the number of quasi-degenerated modes for a given o, can
consequently be deduced from the numbering of the different spans of the structure considered. The 2nþ1 � 1
spans in the structure are linked to each other by scale factors multiple of 3:

3� 2n�1 spans of length l=3n ðthe shorter spansÞ;

2n�j spans of length l=3nþ1�j ðj 2 ½2; n�Þ:

(
(9)

Since localization concerns spans longer than l=3n (vibration in the shorter spans leads to extended modes),
we obtain:

DI ¼
Xn

j¼i

2n�j ¼ 2n�i, (10)

with i identifying the span of length ls ¼ l=3nþ1�i, shorter span concerned by the vibration at o (i in ½1; n�).
Consequently, we can find the different spans concerned by the localization from the heigh of a quasi vertical
zone in the integrated DOS. As the modes are quasi-degenerated, the experimental identification of these
zones can be difficult (in case of important noise and low-quality factor resonances); anyway, they have
already been observed [3].

4.3. Devil staircase-like shape

For orders higher than 3, an analysis around the self-similarity can also be processed. The integrated DOS
of an order 5 structure is represented in Fig. 7. We can observe that it is possible to magnify successively (twice
from Fig. 7b) the figure with a constant scale ratio x � 3 and to observe the same pattern (a devil staircase-like
curve with three large steps). The self-similar character of the structure signs its physical behaviour. It is
interesting to notice that this curve is close to the integrated DOS of a Fibonacci scheme structure which also
corresponds to a Cantor-like spectrum [8]. Moreover, the Hausdorff dimension D of the model used to place
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the masses M (the Cantor Set) and its prefractal order n can be deduced from the scale ratio x, from the
observation of the invariant pattern and from the number of successive magnification that it is possible to
process. Finally, the value of the spectral dimension ðd̄ ¼ 1Þ is confirmed because in a linear axis system, the
parts of the curve corresponding to localization are linear.

5. Role of the distribution of the scatterers

A question remains concerning the role of the scatterers distribution in the behaviour of the structure.
The deterministic9 structures presented in the previous sections present strong localization.
Among other phenomena, it is important to explore the consequences of the geometrical regularity of the
structure.

A random fractal structure can be derived from the previous deterministic self-similar structure by a
random permutation of the different spans, so that their number, their length and the number of loading
9A deterministic process leads to their construction.
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Fig. 8. Three different distributions of the scatterers of an order 3 self-similar structure.
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masses M are unchanged. For a given order n, numerous distributions are possible. Fig. 8 presents 3 different
distributions for an order 3 self-similar structure:
�
 Masses gathered at the centre of the structure (Fig. 8a).

�
 Masses gathered at the edges of the structure (Fig. 8b and c).

�
 Central and lateral spans adjacent (Fig. 8b and c).

�
 Central and lateral spans separated (Fig. 8a).
These distributions appear extreme as most of the scatterers are gathered but the behaviour of any other
structures shall anyway be intermediate between the behaviour of these ones and the behaviour of the
deterministic one. The different curves presented in Fig. 9 and comparing an order 3 deterministic structure
and the random ones presented in Fig. 8 are similar. The eigenfrequencies of the different structures so appear
to be independent from the distribution.

The case of infinitely heavy scatterers represents the limit behaviour of any structure since the value of the
reflection coefficient R of mass M tends to 1 as o increase (and it increase faster and faster as b increase). For
infinitely heavy scatterers, the characteristic polynomial of the vibrational problem is

det ðM ðn;m; b!1;NÞÞ ¼ ðo2Þ
p
Y

i

det ðM ð0;m; 1;NiÞÞ.
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Fig. 10. Mode 23 ðo=o0 ¼ 18:4Þ of two order 3 prefractal structures (to be compared with Fig. 3b); b ¼ 1:15: (a) corresponds to the

distribution presented in Fig. 8a, (b) corresponds to the distribution presented in Fig. 8c.
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Since the multiplication is commutative, the eigenvalues of matrix M ð0; 1;NiÞ that describe non-loaded
structures of Ni elements (the different spans of the structure) are independent from the distribution (all the
scatterers are motionless).

For finite-weight structures (and b41), we observe extended (acoustical and optical) and localized modes.
Acoustical modes are known to be nearly independent from loading masses positions and the four
distributions possess the same eigenfrequencies in this pass-band. Furthermore, the permutations processed
keep spans length unchanged: optical modes are also unchanged in these distributions (since loading masses
sites correspond to nodes in these modes).

Finally in the localized modes, few scatterers contribute to the wave extinction. The localization is close to a
redefinition of the limits of the structure that can be cut at a very short distance from the edges of the vibrating
span. The position of the span in the structure is therefore without effects for this type of modes.

The case of secondary localizations (localizations in the lateral spans) has to be discussed. For
the deterministic structures, we observe that excitation of the lateral spans is exclusive of excitation of the
central part, despite the integer multiple factor of scale that exists between these two families. For the
structures of Figs. 8b and c, only one scatterer separates the two families of spans. In this case,
the displacement in the lateral spans cannot be extinguished before entering the central one which is then
excited as shown in Fig. 10. Anyway, the mode is still localized, even if the part concerned by the excitation
is greater.

6. Conclusions

Extended and trapped modes are observed in the spectrum of 1D self-similar structures. They appear
intermediate between periodic and random systems, like quasi-periodic structures previously studied [8,9].
Considering the scattering process, we show that wave trapping corresponds to a strong localization
phenomenon that prevents vibrational energy transmission and introduces stop-band in such structures. The
analysis of the integrated density of state allows one to predict the localization bandwidths since the wave
trapping corresponds to abrupt crossovers, where origin does not correspond to any weak value of a spectral
dimension d̄. As for the quasi-periodic structures based on a Fibonacci scheme, we find that the curve fits a
devil staircase-like figure; this result is more evident for the self-similar system as it is based on the same model
as the devil staircase (the Cantor set). Fractal dimension D and prefractal order n can be extracted. We finally
show that the deterministic character of the structure does not interfere with its vibrating behaviour: any
distribution of scatterers leading to a fractal dimension D and a prefractal order n behaves the same way.
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Possible application of localized modes have not yet be explored but the capacity of these structures to trap
energy at some frequencies let us imagine multiple noise filtering applications.
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